3.525 \(\int \frac {a+b \sin ^{-1}(c x)}{\sqrt {d+c d x} \sqrt {f-c f x}} \, dx\)

Optimal. Leaf size=55 \[ \frac {\sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 b c \sqrt {c d x+d} \sqrt {f-c f x}} \]

[Out]

1/2*(a+b*arcsin(c*x))^2*(-c^2*x^2+1)^(1/2)/b/c/(c*d*x+d)^(1/2)/(-c*f*x+f)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 55, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {4673, 4641} \[ \frac {\sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 b c \sqrt {c d x+d} \sqrt {f-c f x}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c*x])/(Sqrt[d + c*d*x]*Sqrt[f - c*f*x]),x]

[Out]

(Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/(2*b*c*Sqrt[d + c*d*x]*Sqrt[f - c*f*x])

Rule 4641

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSin[c*x])^
(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && NeQ[n,
-1]

Rule 4673

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(q_), x_Symbol] :> D
ist[((d + e*x)^q*(f + g*x)^q)/(1 - c^2*x^2)^q, Int[(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n, x]
, x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfIntegerQ[p, q]
 && GeQ[p - q, 0]

Rubi steps

\begin {align*} \int \frac {a+b \sin ^{-1}(c x)}{\sqrt {d+c d x} \sqrt {f-c f x}} \, dx &=\frac {\sqrt {1-c^2 x^2} \int \frac {a+b \sin ^{-1}(c x)}{\sqrt {1-c^2 x^2}} \, dx}{\sqrt {d+c d x} \sqrt {f-c f x}}\\ &=\frac {\sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{2 b c \sqrt {d+c d x} \sqrt {f-c f x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.56, size = 110, normalized size = 2.00 \[ \frac {\frac {b \sqrt {1-c^2 x^2} \sin ^{-1}(c x)^2}{\sqrt {c d x+d} \sqrt {f-c f x}}-\frac {2 a \tan ^{-1}\left (\frac {c x \sqrt {c d x+d} \sqrt {f-c f x}}{\sqrt {d} \sqrt {f} \left (c^2 x^2-1\right )}\right )}{\sqrt {d} \sqrt {f}}}{2 c} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSin[c*x])/(Sqrt[d + c*d*x]*Sqrt[f - c*f*x]),x]

[Out]

((b*Sqrt[1 - c^2*x^2]*ArcSin[c*x]^2)/(Sqrt[d + c*d*x]*Sqrt[f - c*f*x]) - (2*a*ArcTan[(c*x*Sqrt[d + c*d*x]*Sqrt
[f - c*f*x])/(Sqrt[d]*Sqrt[f]*(-1 + c^2*x^2))])/(Sqrt[d]*Sqrt[f]))/(2*c)

________________________________________________________________________________________

fricas [F]  time = 0.43, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {c d x + d} \sqrt {-c f x + f} {\left (b \arcsin \left (c x\right ) + a\right )}}{c^{2} d f x^{2} - d f}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/(c*d*x+d)^(1/2)/(-c*f*x+f)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(c*d*x + d)*sqrt(-c*f*x + f)*(b*arcsin(c*x) + a)/(c^2*d*f*x^2 - d*f), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \arcsin \left (c x\right ) + a}{\sqrt {c d x + d} \sqrt {-c f x + f}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/(c*d*x+d)^(1/2)/(-c*f*x+f)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)/(sqrt(c*d*x + d)*sqrt(-c*f*x + f)), x)

________________________________________________________________________________________

maple [F]  time = 0.31, size = 0, normalized size = 0.00 \[ \int \frac {a +b \arcsin \left (c x \right )}{\sqrt {c d x +d}\, \sqrt {-c f x +f}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(c*x))/(c*d*x+d)^(1/2)/(-c*f*x+f)^(1/2),x)

[Out]

int((a+b*arcsin(c*x))/(c*d*x+d)^(1/2)/(-c*f*x+f)^(1/2),x)

________________________________________________________________________________________

maxima [A]  time = 0.47, size = 32, normalized size = 0.58 \[ \frac {b \arcsin \left (c x\right )^{2}}{2 \, \sqrt {d f} c} + \frac {a \arcsin \left (c x\right )}{\sqrt {d f} c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/(c*d*x+d)^(1/2)/(-c*f*x+f)^(1/2),x, algorithm="maxima")

[Out]

1/2*b*arcsin(c*x)^2/(sqrt(d*f)*c) + a*arcsin(c*x)/(sqrt(d*f)*c)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {a+b\,\mathrm {asin}\left (c\,x\right )}{\sqrt {d+c\,d\,x}\,\sqrt {f-c\,f\,x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c*x))/((d + c*d*x)^(1/2)*(f - c*f*x)^(1/2)),x)

[Out]

int((a + b*asin(c*x))/((d + c*d*x)^(1/2)*(f - c*f*x)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a + b \operatorname {asin}{\left (c x \right )}}{\sqrt {d \left (c x + 1\right )} \sqrt {- f \left (c x - 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(c*x))/(c*d*x+d)**(1/2)/(-c*f*x+f)**(1/2),x)

[Out]

Integral((a + b*asin(c*x))/(sqrt(d*(c*x + 1))*sqrt(-f*(c*x - 1))), x)

________________________________________________________________________________________